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Subtraction of “accidentals” and the validity of Bell tests
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In some key Bell experiments, including two of the well-known ones by Alain Aspect, 1981-2, it is
only after the subtraction of “accidentals” from the coincidence counts that we get violations of Bell
tests. The data adjustment, producing increases of up to 60% in the test statistics, has never been
adequately justified. A straightforward realist model, assuming pulsed classical light and giving
good fit to the unadjusted data, is discussed. In the light of this, and of the other known Bell test
“loopholes”, the claim that the universe is fundamentally nonlocal needs re-assessment.
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In early “EPR” experiments, testing ideas inspired by
Einstein, Podolsky and Rosen as set out in their famous
1935 paper [1], it is clear there were doubts regarding the
validity of Bell tests using data that had been “adjusted
for accidentals”. In a paper by Freedman and Clauser [2],
for instance, the Bell test was conducted using both raw
and adjusted data. In this particular case, the difference
was unimportant. The emission rates used were excep-
tionally low, and so (as will be shown later) it is not
surprising that accidentals were very low, only about 1
in 40 of the detected coincidences.
But, in 1981-2 [3], Aspect, possibly following ear-

lier precedents, subtracted accidentals in experiments in
which they formed around 25% of his coincidences. The
procedure was queried in 1983 by Marshall, Santos and
Selleri [4], and later by Wesley [5]. Aspect and Grang-
ier responded to the 1983 challenge [6]. They employed
theoretical arguments, though, that involved many as-
sumptions [7], and supported these by a small amount of
additional data. This was from Aspect’s “two-channel”
(‘+’ and ‘−’ from each polariser) experiment only. For
this experiment, the raw data does indeed produce Bell
violations, but the Bell test used here (using SStd, Ap-
pendix A) is one that is readily violated if the “fair sam-
pling” assumption, for example, is false [8]. His other,
“single channel”, experiments used a different – and, in
my view, generally superior – Bell test (using SC : see
Appendices A and B, which include a very simple deriva-
tion). So far as can be judged from analysis of data from
his PhD thesis [9], the raw data for these does not violate
the test.
The magnitude of the problem has never been publi-

cised. Somehow it became customary to adjust the data,
and to publish no explanation. Wesley had to use consid-
erable imagination to deduce the order of magnitude of
the effect on Aspect’s Bell tests, as he had access only to
information from the Physical Review Letters papers [3].
From about 1983 till 1998, some experimenters (for ex-
ample, Rarity and Tapster in 1994 [10] and Tittel et al

in 1997 [11]) adjusted data as a matter of routine, whilst
others [12] did not.
Data on accidental rates is not always given, but Tit-

tel’s 1997 paper is an exception, including a graph from
which it is easy to see that the rate is about 30%. The
adjustment changes the visibility (SV , Appendix A) from
about 45% to 82%, an increase of about 60% and suffi-
cient to bring the value above the Bell limit of 71%! This
is the paper that revived my interest in the subject, as I
had hitherto assumed that the practice would have been
abandoned with the switch to “PDC” (Parametric Down-
Conversion) sources in place of atomic cascades. (As-
pect’s justification, involving the assumed independence
of emission events, does not so readily apply. See later.)
I corresponded with Tittel et al, and placed a paper in
the Los Alamos quantum physics archive [13]. Many, if
not all, experimenters in the field now recognise that it
is the raw data that must be used in Bell tests [14]. The
adjustment alters the test statistic. The amount varies,
but simple algebra shows that the direction is always in
favour of the quantum theory prediction.

I. EPR EXPERIMENTS: THEORY AND
PRACTICE

Now, as is well documented in the literature [15–17], in
an idealised “EPR experiment” a source emits pairs (A
and B) of correlated quantum particles. They are sent
to analysers (polariser/photomultiplier combinations, for
example) whose settings can be chosen by the experi-
menter. If an analyser detects its particle, it clocks up a
1. If both do this simultaneously, a coincidence is scored.
By repeating this experiment using several different set-
tings, the manner in which coincidence rates vary as we
vary the settings can be studied, and data extracted for
the conduct of Bell tests. The latter were devised so as
to distinguish the quantum theory (QT) prediction from
models that rely on purely local effects. QT predicts
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peculiarly high correlations between the A and B detec-
tions, ones that cannot be explained without assuming
“non-local entanglement”. “Realist” explanations, rely-
ing only on the effects of “common causes”, predict (for
perfect experiments!) lower correlations.
In practice, almost all EPR experiments to date have

used light. The quantum theory interpretations have
assumed that the light emitted, whether by “radiative
atomic cascades” or by PDC, is produced in pairs of
“photons”. But the two detections are not registered
at quite the same moment, either because they were not
emitted quite simultaneously or because of the imperfect
time-resolution of the detectors. (In practice, the fact
that in PDC the two photons are in theory emitted at
the same time makes only a slight quantitative differ-
ence [18].) It is not, therefore, entirely obvious which
detections represent correlated pairs. The problem is
exacerbated by the fact that the detectors are far from
perfect, with “efficiency” in the early experiments – and
even some recent ones – of 5% or lower. In order to esti-
mate the number of paired detections, the times between
successive A and B counts are analysed to give a time
spectrum (see example, Fig. (1)). A “coincidence win-
dow” is defined by the experimenter (for the illustrated
example it was from 3 ns before the peak to 17 ns after
it) and all results falling between these limits are taken
to be coincidences.

FIG. 1. Time spectrum from Aspect’s thesis. (Actual runs
would have had considerably greater scatter as they were over
shorter periods.)

Thus this integral from −3 ns to +17 ns gives us our
raw coincidence counts. Clearly, in the ideal situation,
with pairs produced at large intervals, we would expect
the time spectrum to be zero at all points outside our
time window. It is not. There is a strong temptation
to assume that the flat regions to either side of the peak
represent some kind of steady “accidental” rate, and that
this should be subtracted from our integral to give “true”
coincidences. But is this correct?

II. ESTIMATION AND LOGIC OF
“ACCIDENTALS”

There are two main methods of estimating so-called
“accidentals”. The most common is to take the stream of
electronic data generated by the detector on one side and
delay it by, say, 100 ns. This is sufficient to destroy any
synchronisation, and so coincidences measured now must
necessarily represent chance, or accidental, ones [19]. The
other method, reported to give almost identical results, is
to take the two “singles rates” and multiply them. After
adjusting for window size, this also gives a natural mea-
sure of accidental rate. The objectivity of the procedure
is not here in question, only its relevance – whether or
not it gives a fair estimate for the region near “zero”, as
well as for points well away from it.
For it is not logical to consider the region near the

“zero” time-difference point as the same as all others. It
represents the simultaneous detection of two light signals
that were emitted together or, possibly, genuine signals
matched with “noise”. There are real possibilities that
are being ignored if the accidental rate is assumed the
same at zero as elsewhere.

• The source may not in fact be capable of emit-
ting pairs of signals without a short break in be-
tween. Ignoring noise, therefore, perhaps all de-
tections within the coincidence window must come
from the same emission event. The latter will, in a
classical theory, form a prolonged pulse, so that de-
tections are spread over time only because different
parts of the pulse are detected at random [20].

• Probabilities of detection may not be additive.
Noise added to a strong signal may have little effect,
whilst added to a weak one it causes detection.
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FIG. 2. Model of time spectrum, from Aspect’s thesis.
Dark shading: “true”; Light shading: “accidental” coinci-
dences.

Aspect assumed [9] that every one of the thousands
of atoms in his source region acted independently, so
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that emissions from different atoms could occur arbitrar-
ily close in time, making “wrong” pairings (almost) as
likely at zero as at any other time difference. He devoted
several pages of his thesis to the matter, illustrating his
model as shown in Fig. (2). His theory left him free to
subtract “accidentals”, and hence free to ignore them in
his choice of experimental parameters. He chose to fol-
low Stuart Freedman [21], minimising a “quality factor”
that amounted to using the minimum running time for
the experiment to achieve statistical significance for his
results. This criterion led him to chose a fairly high emis-
sion rate, with consequent high accidental rates, as these
are proportional to the product of the rates in the two
streams.
It is of interest to note that Aspect would have ex-

pected to be able to produce the same Bell violations
with no need for adjustment for accidentals if he had
used a reduced emission rate. This is because, though
the accidentals vary as the product of rates, N2, the co-
incidence rate should vary directly with N itself. In-
deed, as he states in his thesis and in a footnote in [6],
this relationship has been confirmed experimentally. As
mentioned earlier, Freedman in 1972 had a low emission
rate (or, at least, a low detection rate) and hence suf-
ficiently low accidentals for them not to affect his con-
clusion. It follows that a much more satisfactory way
of countering challenges as to the validity of the adjust-
ment would have been to conduct experiments at lower
emission rates, rather then rely on theory.
Tittel [11] assumed that the majority of the accidentals

in his long-distance Bell tests were due to noise accumu-
lated in transit, along the several kilometers of fibre-optic
cable. He states that a “dark count” of 100 kHz was in-
cluded in a singles rate of 170 kHz. (There is a confusion
of terminology here: he means, presumably, the count ob-
tained when the signal is cut off at source but noise from
the environment of the cable is not excluded. It is some-
times necessary to distinguish this noise from the basic
dark count registered by a photomultiplier in the absence
of any input at all.) For a PDC source, both QT and clas-
sical theory lead to the assumption that only one pair of
signals is produced at a time. Aspect’s argument does
not so readily apply, as the chance of two emissions oc-
curring within the time window so that accidental wrong
pairing can take place is assumed negligible.

III. QUANTUM THEORY AND LOCAL REALIST
PREDICTIONS

Curve 1

Curve 2
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FIG. 3. Principal predicted “coincidence curves” for the
ideal case, and actual data from Aspect’s 1981 experiment.
Curve (1): quantum theory; curve (2): the basic local realist
prediction. ⋆ indicates raw data; ◦ adjusted.

The quantum theory prediction for the probability of
(same-channel) coincidences for a perfect experiment, us-
ing plane polarised light, is well known to be

PAB,Q =
1

2
cos2 φ, (1)

curve (1) of Fig. 3, where φ is the angle between the
polariser axes.
The standard local realist prediction when using po-

larised light is not in fact so very different (curve (2)).
The plotted data points will be discussed in the next sec-
tion.
Note that for the purposes of actual Bell tests, it is the

value of the minimum that is crucial. For light, indeed,
a formal Bell test is not needed to discriminate between
quantum theory and this model. A simple test of vis-
ibility (see Appendix A), using just the maximum and
minimum values, will suffice. Whereas for the idealised
Stern-Gerlach experiment quantum theory and local real-
ist models agree as to the maximum and minimum, both
saying that the coincidence probability for a given chan-
nel is 0.5 for parallel detectors, 0 for orthogonal ones, for
light the realist model gives a lower maximum and non-
zero minimum. That it must be non-zero in this perfect

case follows directly from the assumptions, as explained
later.
The basic assumptions for a perfect experiment are

that there should be no preferred polarisation direction
(the source is ”rotationally invariant”) and, for the quan-
tum theory version, that “quantum efficiency” of the de-
tectors is 1. It is also taken as read that there are no acci-
dentals or other ambiguities – pairs are clearly identified.
It is further assumed that we have symmetry between the
two sides. The absence of preferred direction then implies
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that the coincidence curve will be a function of the angle
between the polarisation axes of the two detectors.

A. Quantum theory prediction

For a full treatment of the QT prediction, the reader
is referred to texts such as that by Mandel and Wolf [22].
My own understanding of the general idea is as follows. A
joint wave function for the two “photons” is established,
taking account of their “entanglement”, then the “pro-
jection postulate” is employed to translate this into the
appropriate form to allow for the two polariser settings.
There is some conceptual difficulty, as it is not possi-

ble to assign a specific polarisation direction to a photon
until it is detected. Until detection, it exists in a superpo-
sition of vertically and horizontally polarised states, the
definition of “vertical” being at the discretion of the ob-
server. The theory is tied to the idea that we are dealing
with dichotomous observables, and instruments that pro-
duce outcomes that are either “+” or “−”, never “some
of each” or “nothing”. The joint state is known as the
“singlet state”, represented in symbols by formulae such
as:

|ψ〉 = 1√
2
(| l〉| l〉+ | ↔〉| ↔〉). (2)

The projection postulate enables one to transform this
wave function into predicted results for polarisers set with
axes at relative angle φ. The formula can be adapted
slightly to allow for imperfect instruments – the occa-
sional absorption of a photon by a polariser, say – but
the adaptation requires specialist skill. All the variants
I have encountered (for example, in Aspect’s work and
papers such as that by Lepore and Selleri [23]) appear to
be constrained to depend on φ only through cos2 terms,
never through more general functions.

B. Realist prediction

The realist prediction that I am considering follows
from the assumption that the two emitted signals are not
photons but short pulses of classical light. They have a
common polarisation direction, which forms the “hidden”
or “common cause” variable that causes the correlation
that gives rise to the coincidence pattern of curve (2).
For the perfect case, the assumptions made are that:

• the intensity of the light is reduced by the polarisers
following Malus’ Law [24], the intensity for light
polarised parallel to the axis being unaffected by
the polariser.

• the detectors have a linear response to (electromag-
netic) intensity, i.e. if intensity is I, the probability

of a count is proportional to I. Light that does not
pass through a polariser or that is polarised parallel
to its axis is detected with probability 1.

• the “factorability” assumption: for every fixed po-
larisation direction λ, the probability of coincidence
is the product of the probabilities of detection for
the two signals separately.

Interpreting the above, we have, for polarisation axes
at angles a and b respectively:

p(a, λ) = cos2(λ − a)

p(b, λ) = cos2(λ− b), (3)

for the “singles” probabilities, giving probability of a co-
incidence for the polarisation direction λ

pAB,R(a, b, λ) = p(a, λ)p(b, λ). (4)

Integrating over all polarisation directions, this yields av-
erage probability of a coincidence

PAB,R(a, b) =

∫ π

0

dλ

π
cos2(λ − a) cos2(λ− b) (5)

This expression can be integrated using high school
maths (I show details in Appendix C). The listed as-
sumptions, though, can readily be relaxed to allow for
experimental imperfections without sacrificing the prin-
ciples of locality. Thus there is a wide class of variants
of the above, in which the weighting factor 1

π
is replaced

by a function depending on λ, or the cos2 terms replaced
by different functions. These are likely to require numer-
ical integration. Even the last, factorability, assumption,
often taken to be the definition of locality, can be re-
laxed slightly as it is not in practice always realistic. It
will not hold exactly if there are synchronisation prob-
lems [13,25,26], and in this case full computer simulation
may be needed. Some of the results will be indistin-
guishable experimentally from curve (1). But this is by
the way (it is partly covered by papers such as Marshall,
Santos and Selleri’s 1983 one [4] and more recent contri-
butions by Gilbert and Sulcs [27] and Vladimir Nuri [28]).
The purpose of the current paper is to discuss the matter
of “accidentals”.
It is of fundamental importance to realise that the

main difference between the QT and realist predictions
for the ideal case is the non-zero minimum of the realist
one. If we assume both adherence to Malus’ Law and a
uniform distribution of polarisation directions, the fact
that all λ values (other than exactly 90◦ to the axis) are
detected to some degree means the minimum of the aver-
age cannot be zero. To see this clearly, consider the case
of polarisers set orthogonally, for which the minimum is
achieved. In our realist model, take the subensemble of
emissions polarised at λ = 45◦ to both axes. The individ-
ual probabilities of detection in the + channel are both
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1/2, and the coincidence probability 1/4. This is not
zero, and nor are any of the other contributions for the
other values of λ, apart from a set of measure zero – that
for λ exactly 0◦ or 90◦. As the integration involves no
negative contributions, the result must be greater than
zero (in fact, 1/8).

IV. THE EXPERIMENTAL CONSEQUENCES OF
SUBTRACTION OF ACCIDENTALS

Let us now consider some data from real experiments.

A. Aspect’s 1981 experiment

Aspect’s first experiment, a single-channel one re-
ported in 1981, is the only one for which I have full data
on accidentals. The data in table I is a summary of that
presented in his thesis in raw form.

φ 0 22.5◦ 45◦ 67.5◦ 90◦ z Z SV SC

Raw
coincidences 96 87 63 38 28 126 248 0.55 -0.121
“Accidentals” 23 23 23 23 23 46 90

Adjusted
values 73 64 40 16 5 81 158 0.88 0.096

TABLE I. Effect of standard adjustment for “accidental”
coincidences. z is rate with one polariser absent, Z that with
both absent. SV = visibility. See Appendix for definition
of SC . Under local realism, it cannot exceed zero. (Derived
from table VII-A-1 of Aspect’s thesis, relating to his 1981
single-channel experiment.)

The pattern of accidentals found here is as expected.
If that for both polarisers present is A, then, because
removal of a polariser doubles the beam intensity (at
least approximately), the coincidence rate with one re-
moved is expected to be 2A, and that with both removed
4A. The effect of subtraction of accidentals is to shift
all points downwards, reducing the minimum to nearly
zero. After “normalisation” by division by the value with
both polarisers removed, the adjusted data is in reason-
able agreement with the quantum theory prediction (see
Fig. 3). The same normalisation brings the raw data,
however, into very good agreement with the realist pre-
diction. Both predictions can be improved by allowing
for experimental imperfections.

B. Tittel et al: Quantum Correlations over 10 k,
Geneva, 1997

FIG. 4. Coincidence rates against phase shift, from Tittel’s
1997 10 k experiment in Geneva.

The data from Tittel et al’s 1997 experiment [11] is
aptly summarised in the graph of Fig. (4). Note that the
vertical axis starts at 150, the “accidental” rate that is
subtracted before analysis. The graph represents a co-
incidence curve taken over many periods, modulated by
a function related to the coherence length of the “pho-
tons”. It was assumed that accidentals were due mainly
to noise introduced along the 10 k long optical fibres link-
ing source to detectors. It is clear from the graph that
the adjustment was large. I estimate that it would have
changed the visibility from about 0.5 to the value of 0.816
that was reported.

V. DISCUSSION

Some of the key analyses presented for public view have
not followed the accepted principle that sufficient infor-
mation should be given for the reader to make an unbi-
ased assessment. Assumptions have been made that, had
they been clearly stated, would have been much more
widely challenged. Independence of emission events, for
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example, is a quantum theory assumption of long stand-
ing, yet has it ever been proved? In experiments of fun-
damental significance, where the very possibility of pro-
viding rational explanations for quantum phenomena is
at stake, it is not acceptable.
This all seems now to be generally agreed. A re-

assessment is evidently required, looking not only at the
effect of data adjustment but conducting further com-
prehensive experiments to investigate the effects of al-
tering parameters such as emission rates, beam attenua-
tion, detector properties and coincidence windows. The
importance of the known but much-neglected “loopholes”
would then, I believe, become apparent. It appears likely
that such investigation would result in a very consider-
able reduction in claims to have observed non-local phe-
nomena. Indeed, they might be eliminated entirely, al-
lowing a return to the view that the world is, after all,
obeying local causal rules, even at the quantum level.

APPENDIX A: BELL TESTS

I give in table II formulae for the Bell tests that are
commonly found in actual (optical) experiments. More
general formulae are needed if the source lacks rotational
invariance or there are asymmetries. (It is no accident
that they bear little resemblance to the inequalities orig-
inally invented by Bell, as the latter were specifically
designed to deal with “spin-1/2” particles, using Stern-
Gerlach magnets, and depended on the assumption that
all particles were detected.)

Test Statistic Upper Limit Auxiliary
Assumption

Standard SStd = 4(x−y

x+y
) 2 Fair sampling

Visibility SV = max−min
max+min

0.71 ”

CHSH SC = 3 x
Z
−

y

Z
− 2 z

Z
0 No enhancement

Freedman SF = x−y

Z
0.25 ”

TABLE II. Various Bell inequalities, for rotationally in-
variant, symmetrical, factorisable experiments. x = R(π/8),
y = R(3π/8), z = R(a,∞) and Z = R(∞,∞), using the
usual terminology in which R is coincidence rate (for ++ co-
incidences, in the two-channel case), a is polariser setting, and
∞ stands for absence of polariser.

The first two tests are, I believe, always biased [8,13].
For a valid Bell test, the denominator should be the num-
ber of pairs emitted, and the values used are very much
too small. The last two tests may be less biased, using the
coincidence counts with no polarisers present as denom-
inator. They do suffer, though, from the need to assume
“no enhancement” (the presence of a polariser never, for
any hidden variable value, increases the chance of de-
tection). This is considered by some [4] to be a serious
drawback, but my personal view is that it is likely to be of
very much less importance than the “fair sampling” fail-
ures that can so easily bias other tests. The derivation
of the CHSH test is very straightforward and instructive.
As it is rarely reproduced, I give it in the next section.

APPENDIX B: DERIVATION OF THE
(SINGLE-CHANNEL) CHSH INEQUALITIES

Clauser and Horne, in their excellent paper of
1974 [29], give elegant derivations of two inequalities.
Both are important. The first makes probably the least
possible assumptions, but is of use only for near-perfect
detectors. The second (using SC) is the one that is used
in practice, for example in Freedman’s and the first and
last of Aspect’s experiments [2,3]. It is valid under a wide
range of assumptions, even when detector efficiencies are
low. Various ideas in this 1974 paper represent notable
advances over their 1969 one with Shimony and Holt [30]
and it is unfortunate that the latter seems much more
widely known.
In hindsight, it would appear that the treatment per-

haps does not emphasise sufficiently the possibilities for
assumption failures. Two points in particular come to
mind. Firstly, they take for granted “factorability”, and
this may fail. One of the footnotes of their 1974 pa-
per in fact guards against this, though they do not state
it explicitly: their footnote [9] gives conditions on coinci-
dence window sizes and pair separation times that should
ensure that pairs can be identified unambiguously (and,
incidentally, that accidentals are negligible), and if these
are satisfied factorability should follow. Secondly, they
imply that “rotational invariance” can satisfactorily be
ascertained by experiment. For a rigorous confirmation
of invariance, however, a considerable amount of extra
experimentation would be needed, so that it would be
quicker and simpler to make no such assumption and to
use the full version of the test. As Bell tests are quite
sensitive to invariance failures, and as QT and realist
models of a given setup may not agree on this point, it
should not be assumed lightly.
To return to Clauser and Horne’s exposition: I shall

quote in full the derivation of the first test, then briefly
outline the second, which follows a similar method.
Starting at page 528 we find the following (in their own

words apart from equation numbers):
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1. Derivation of the “Minimum-assumption CHSH”
inequality

... in this section, we derive a consequence of [the fac-
torability assumption] which is experimentally testable
without N being known, and which contradicts the
quantum-mechanical predictions.
Let a and a′ be two orientations of analyzer 1, and let b

and b′ be two orientations of analyzer 2. The inequalities

0 ≤ p1(λ, a) ≤ 1,

0 ≤ p1(λ, a
′) ≤ 1,

0 ≤ p2(λ, b) ≤ 1, (B1)

0 ≤ p2(λ, b
′) ≤ 1

hold if the probabilities are sensible. These inequalities
and the theorem [see below (Appendix A of original pa-
per)] give

− 1 ≤ p1(λ, a)p2(λ, b)− p1(λ, a)p2(λ, b
′)

+ p1(λ, a
′)p2(λ, b) + p1(λ, a

′)p2(λ, b
′)

−p1(λ, a′)− p2(λ, b) ≤ 0

(B2)

for each λ. Multiplication by ρ(λ) and integration over
λ gives [assuming factorability]

− 1 ≤ p12(a, b)− p12(a, b
′) + p12(a

′, b) + p12(a
′, b′)

−p1(a′)− p2(b) ≤ 0 (B3)

as a necessary constraint on the statistical predictions of
any OLT [Objective Local Theory]. If, for some reason
such as rotational invariance, it is found experimentally
that p1(a) and p2(b) are constant, and that p12(a, b) =
p12(φ) holds, where φ = |b− a| is the angle between the
analyzer axes, then (B3) becomes

− 1 ≤ 3p12(φ)− p12(3φ)− p1 − p2 ≤ 0. (B4)

Here, a, a′, b and b′ have been chosen so that

|a− b| = |a′ − b| = |a′ − b′| = 1

3
|a− b′| = φ.

The upper limits in (B3) and (B4) are experimentally
testable without N being known. Inequalities (B3)
and (B4) hold perfectly generally for any systems de-
scribed by OLT. These are new results not previously
presented elsewhere. [End of quoted text.]

2. CHSH inequality with supplementary
assumptions

On page 530, we find derivation of an inequality of sim-
ilar structure that can be used with real, low-efficiency,
detectors. It employs an assumption rather stronger

than (B1). This is the ”no enhancement” assumption,
which can be expressed mathematically in the form:

0 ≤ p1(λ, a) ≤ p1(λ,∞) ≤ 1,

0 ≤ p2(λ, b) ≤ p2(λ,∞) ≤ 1, (B5)

where ∞ denotes absence of the polariser, p1(λ,∞) the
probability of a count from detector 1 when the polariser
is absent and the emission is in state λ, and p2(λ,∞)
likewise for detector 2.
Using the same arguments as before, we find (B3) re-

placed by:

− p12(∞,∞) ≤ p12(a, b)− p12(a, b
′) + p12(a

′, b) + p12(a
′, b′)

−p12(a′,∞)− p12(∞, b) ≤ 0. (B6)

and (B4) (the version for use when we have rotational
invariance) replaced by:

− p12(∞,∞) ≤ 3p12(φ) − p12(3φ)

−p12(a′,∞)− p12(∞, b) ≤ 0. (B7)

When the two sides of the experiment are symmetrical,
after dividing through by p12(∞,∞) the right-hand in-
equality leads to the SC test of table II above.

3. Theorem from Clauser and Horne’s original
Appendix A

The above derivations depend on the following theo-
rem, proved on page 530 of Clauser and Horne’s paper:
Given six numbers x1, x2, y1, y2, X and Y such that

0 ≤ x1 ≤ X,

0 ≤ x2 ≤ X,

0 ≤ y1 ≤ Y,

0 ≤ y2 ≤ Y,

then the function U = x1y1−x1y2+x2y1+x2y2−Y x2−
Xy1 is constrained by the inequalities

−XY ≤ U ≤ 0.

APPENDIX C: INTEGRATION OF THE
STANDARD REALIST FORMULA

We require to integrate equation (5),

PAB,R(a, b) =

∫ π

0

dλ

π
cos2(λ− a) cos2(λ − b),

using elementary maths.
Now the trigonometric identity

cos(A +B) + cos(A−B) ≡ 2 cosA cosB

7



tells us that

P =

∫ π

0

dλ

4π
{cos((λ− a) + (λ− b)) + cos((λ− a)− (λ− b))}2

=

∫ π

0

dλ

4π
{cos2(2λ− a− b))

+ 2 cos(2λ− a− b). cos(b− a) + cos2(b − a)}.

The identity cos2A ≡ 1

2
(1 + cos 2A) then gives us:

P =

∫ π

0

dλ

4π
{1
2
+

1

2
cos(4λ− 2a− 2b)

+2 cos(2λ− a− b). cos(b − a) + cos2(b− a)}.

The second and third terms contribute zero to the inte-
gral, being cosines integrated over complete periods. We
are left with:

P =
1

4π
(
π

2
+ π cos2(b − a))

=
1

8
+

1

4
cos2 φ,

which can alternatively be written

P =
1

4
+

1

8
cos 2φ.
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