Theory of Relativity

As with the Doppler effect, this discussion is essentially an overview of some of the issues, which may have to be resolved if any form of WSE model is to be prove viable. Therefore, this introduction will try to outline the wider scope of the discussions to follow, which must have to question some aspects of the theory of relativity and the standard model of science, especially in terms of the accepted assumptions about space and time. However, we might start with Einstein’s own overarching description of the theory of relativity.

I must observe that the theory of relativity resembles a building consisting of two separate stories, the special theory and the general theory. The special theory, on which the general theory rests, applies to all physical phenomena with the exception of gravitation; the general theory provides the law of gravitation and its relations to the other forces of nature.

As indicated, relativity consists of two complementary theories, i.e. special relativity (1905) describing inertial systems, and general relativity (1915), addressing the additional complexity of gravitational acceleration. However, these theories did not just update the classical view of physics, but also the accepted understanding of space and time, but the very nature of matter and energy, which were previously grounded in Newtonian physics. Today, along with quantum mechanics, relativity is still considered to be one of the key foundation stones of the standard model of science, which spans our understanding of the universe from the very small to the very large. While history may show that Einstein, like Newton, was not averse to ‘standing on the shoulders of giants’, few would deny that he was a remarkable innovative thinker, possibly best illustrated by the annus mirabilis papers’ published in 1905. However, despite the success and acceptance of both relativistic theories, which made Einstein the most famous celebrity scientist in the world, his later career between 1920-1955 is often described in terms of the controversy that surrounded quantum mechanics at that time. While the details of this controversy are too complex to summarise, we might attempt to characterise Einstein’s concerns in respect to the quantum model in the following quote:

I believe that quantum theory is apt to beguile us into error in our search for a uniform basis for physics, because, in my belief, it is an incomplete representation of real things, although it is the only one which we can build out of the fundamental concepts of force and material points, i.e. quantum corrections to classical mechanics.

At this stage, the only point in outlining some aspects of Einstein’s concerns about quantum theory is that it may highlight how science has developed a mathematical description of reality, which is not necessarily grounded in any description that requires any obvious physical causal mechanisms. In this respect, Einstein wanted a fundamental quantum theory to develop beyond its mathematical and probabilistic description of reality, because until it did so it would remain provisional in scope. In many ways, this type of debate still surrounds quantum reality to this day and may help explain the wording Einstein used in the last paper of his life, in 1955, which was to be a preface to a book celebrating the 50th anniversary of the theory of relativity.

The last, quick remarks must only demonstrate how far in my opinion we still are from possessing a conceptual basis of physics, on which we can somehow rely.

Based on these words, we might realise that relativity and quantum mechanics are not only two fundamentally different models of reality, which are incompatible, but must also be incomplete. However, we might simply highlight the scope of this incompatibility in terms the description of space-time as being either continuous or discrete based on assumptions of relativity and quantum theory respectively. As a generalisation, relativity assumes ‘events’ are linked by continuous and deterministic mechanisms, such that every local effect has a local cause, where ‘local’ is defined by the velocity [c] of causal transmission. In contrast, quantum theory allows events to be disconnected by a ‘quantum discontinuity’, which are defined by mathematical probability rather than any obvious causal mechanism that might be explained in terms of relativity or classical physics.

Note: The idea of incompleteness of the accepted model of science might be summarised in terms of relativity offering up apparently nonsensical answers when scaled down to the quantum domain, e.g. infinite values of gravitation. While quantum theory appears to provide equally questionable answers when scaled up into the cosmic domain, e.g. where the amount of energy in the quantum fields would create a black hole into which the universe would collapse. Of course, whether there is room for another model, e.g. the WSE model, to provide a competing description of reality is questionable at this stage.

Today, most physicists will probably support the quantum model on the basis that its description of small-scale events is often perceived to be more fundamental than general relativity, which describes larger scaled events. In part, this position reflects the growing trend since the 1920s, when Einstein tried and apparently failed to find any accepted flaws in the counterintuitive predictions of quantum theory. Of course, as has been highlighted, neither of these conflicting models has been conclusively proven, although considerable empirical evidence has been amassed in support of both models, which might then lead us to question why relativity and quantum theory do not always agree. However, we will start with a statement that both theories might generally support, albeit with some reservations.

Energy is space in motion. Space is energy at rest.

Up until now, the WSE model has not really speculated on the nature of space, but it is becoming an increasingly difficult issue to avoid, especially as general relativity introduces the idea of the curvature of spacetime. For according to general relativity, space can be curved by mass, e.g. stars and planets, such that gravity is not so much a Newtonian force, but rather a distorted geodesic path in space-time. However, history tells us that space has had many descriptions, e.g. fluid or particulate aether, an empty vacuum, discrete quantum oscillators or one of many overlaying quantum fields.

Note: Let us characterise the somewhat conflicting requirements relativity and quantum theory place on the description of space as a continuous, quantized, flexible field, which is not divisible, but may be capable of compression and expansion. However, the quantum state of this space then appears to be described as a chaotic cauldron of near infinite energy, while its macroscopic energy state is near zero according to relativity. Of course, if space can support variations in energy-density, then it might also explain the perception of particles, as a higher localised energy-density, at the macroscopic level of reality.

Based on the previous note, we might attempt some further speculation based on the idea that space must have some quantum characteristics, where we might speculatively define a ‘quantum of space’ as the smallest unit of space that can be deformed by the smallest unit of energy, linked to Planck’s constant [h], which can then be used to define Planck units of scale. A quantum of space is often described in terms of a quantum oscillator, which might also support the progression of an energy flow, as a wave, passing through each quanta of space. These waves would have a specific frequency, which would correspond to the source of potential energy, and the properties of space, but where space seeks to return to some form of equilibrium state by propagating energy away at the speed of light [c]. However, when two or more waves, propagating through space interact, they might also form a standing wave structure that effectively confine energy within a localised region of space, which might then be interpreted as an elementary particle, e.g. electron or possibly the smaller electron neutrino. If we extend this line of speculation, the most elementary particles within the standard model might correspond to a standing wave structure having a specific frequency and wavelength, which can form ever-larger composite structures, e.g. protons and neutrons, which along with electrons form the basis of all atomic structures. As such, space would not only be a media through which energy propagates, but provides a causal mechanism by which energy could first be localised on the quantum scale and then possibly help explain the nature of potential energy associated with gravity and electromagnetism plus the strong and weak nuclear forces in terms of the interaction between standing wave energy patterns in the fabric of space.

Note: While the previous commentary is probably more than enough speculation for the moment, it might still be useful to consider the scale on which any WSE model might operate. If we assume some fundamental particle with no obvious substructure, its wavelength might approximate to the same scale, e.g. less than 10-18m. However, while this wavelength would equate to the spatial distribution of thewave distortion of space, it would not necessarily correspond to the amplitude scale of this wave distortion from its equilibrium state. If the energy-mass of a fundamental particle were to be described in terms of a mechanical wave, then the square of the wave amplitude [A2] would be proportional to energy, where a proportionality constant would be needed to be resolved by some an elasticity factor [k] aggregated over the spatial distribution, i.e. number of wavelengths. So while the wavelength associated with an electron might be approximated, based on some assumed particle radius, the wave amplitude could be considerably smaller, possibly even on the scale of the Planck length, some 15 orders of magnitude smaller. The purpose of this further speculation is to highlight that a WSE model might not operate on scale of the macroscopic curvature of spacetime assumed by general relativity and described in terms of a gravitational geodesic.

Let us now return to the subject of relativity and expand on Einstein’s initial summation by providing an introduction of both special and general relativity.

  • Special relativity covers objects that are moving at constant speed, such that it can be defined as an inertial reference frame of constant motion. The mechanics of special relativity are anchored in the Lorentz transforms that lead to the idea of time dilation and length contraction.

  • General relativity addresses the additional problem of gravity, which is an acceleration force [F=ma=mg] that requires the consideration of non-inertial reference frames. While the mathematics of general relativity can be complex, a specific solution known as the Schwarzschild metric can be used to explain the gravitational effect around an object of mass [M].

As indicated, the acceptance of these two relativistic theories, along with quantum mechanics, profoundly changed the worldview of 20th century science, although there are still some concerns that the current models are too dependent on mathematical constructs, which have not been subject to any obvious form of empirical verification. So, despite the weight of authority amassed over the last 100 years, this overall discussion still wants to discuss whether any form of WSE model might be viable, which begs the obvious question:


In part, it might simply be put down to a gut-feel that the known inconsistencies between the relativistic model and the mathematical abstraction of quantum field theory may still suggest that the current models are incomplete. If so, it might be possible that key aspects of relativity, i.e. time dilation and space contraction, may be logically explained in a different way, if ‘everything’ has an underlying wave structure. For within a WSE model, every physical object in the universe would be described as having its own reference frame that can move with relative velocity [v] with respect to the fabric of space. Therefore, each reference frame would perceive ALL information received from the rest of the universe, i.e. other reference frames, as waves with frequency and wavelength subject to a form of the Doppler effect. In this context, a WSE model would seek to explain the cause and effect of relativity, i.e. time dilation and length contraction, in terms of the Lorentz Doppler effect on the frequency and wavelength of waves received, and used to support the underlying wave structure, which then affect the measure of time and length within that reference frame. However, while each observer must view the universe from their own reference frame, which is an essential axiom of relativity, it is not clear that this necessarily excludes the possibility of a WSE model based on waves that propagate through the fabric of space. If so, it may be possible that the premise of a WSE model might help address some of the contradictions within the current accepted models, which so often lead to the ambiguity of the wave-particle duality.

But surely relativity stands firmly on the argument that there is no fabric of space?

Even in his ‘annus mirabilis papers’ published in 1905, Einstein did not fully reject the existence of an ether as he was only forwarding a mathematical treatment of special relativity. Later, in 1920, after the publication of the general theory of relativity, Einstein appeared to suggest that some form of ‘ether’ had to exist, which we might simply characterise by way of the following quote.

On the other hand, there is a weighty argument to be adducted in favour of the ether hypothesis. To deny the ether is ultimately to assume that empty space has no physical quality whatever. The fundamental facts of quantum mechanics do not harmonize with this view.

In this context, space is given some physical qualities, such that it must also have some physical existence. For Einstein appears to suggest that the general theory of relativity requires the physical property of space, otherwise an empty void would offer up no physical explanation of spacetime curvature. Even today, the rejection of space as an physical media often rest on the standard interpretation of the 1875 Michelson-Morley experiment, which in recent times has be subject to further analysis, which suggests that the results of this experiment may be inconclusive – see Michelson-Morley Experiment and Relative and Relativistic Frames discussions for more details. However, all these discussions are not intended as a denial of all the insights provided by the theory of relativity, but rather an attempt to take heed of Einstein’s own words of caution that follow:

Concepts that have proven useful in ordering things can easily attain an authority over us such that we forget their worldly origin and take them as immutable truths. They are then rubber-stamped as a ‘sine-qua-none of thinking’ and an "a priori given". Such errors often make the road of scientific progress impassable for a long time."