A Light Perspective
Today,
a science book may well describe light in terms of a transverse electromagnetic
wave operating within a certain frequency range, which is visible
to the human eye, but exists within a much larger electromagnetic
spectrum that is not. However, in another reference, light may be described
in terms of a stream of particle-like photons that represent discrete
quanta of energy at a specific frequency. However, this apparent paradox,
often referred to as the wave-particle duality of light, is not the
primary focus of this section, as it is a topic for discussion under
the heading of ‘Quantum Theory’.
As such, this section will focus on the description of light within the restrictions
of an electromagnetic wave.
In 1678, Christiaan Huygens published a paper called ‘Traité de la Lumiere’ in which he argued in favour of the wave nature of light. Huygens stated that an expanding sphere of light behaves as if each point on the wave front were a new source of radiation of the same frequency and phase. Unfortunately for Huygens, Isaac Newton disagreed with him and argued for what is known as the ‘corpuscular theory of light’ and Newton's reputation was enough to sway most to accept his theory. As such, the issue that has become known as the wave-particle duality within quantum physics, actually has a much longer history. While Newton and Huygens disagreed on the nature of light, it is not often realised that both assumed that the wave and the corpuscle required some form of ether through which to propagate. Within Newton’s theory, the existence of the ether was required to transmit forces between the particles of light, while Huygens’ theory needed the ether to act as a propagation medium.
In the previous section, we discussed the nature of mechanical waves that this section now attempts to expand in order to identify the differences between a mechanical wave, which depends on some form of physical medium, and light waves that appear to self-propagate and are therefore capable of travelling vast distances through the vacuum of space. In order to make this comparison, we need to discuss the subject of electrodynamics in the form of Maxwell’s equations, which were first published in 1864, although not in the form we would necessarily recognise today. In many ways these equations have come to represent the transition from classical physics in the form of Newtonian laws of motion and gravitation into what we might describe as modern science with all its mathematical abstractions.
The Perception of Light
- The wave nature of light is often argued based on the observations
of diffraction and interference and its apparent transverse nature
in respect to the effects of polarization.
- Light is produced by one of two methods.
Incandescence
is the emission of light from hot matter, i.e. temperatures greater
than 800K, while
luminescence is the emission of light
when excited electrons fall to lower energy levels.
- The speed of light in a vacuum is represented by the letter
[c] coming from the Latin word ‘celeritas’ meaning swiftness.
- Measuring the speed of light was first, albeit unsuccessfully,
attempted by Galileo based on 2 points less than 1 mile apart. However,
in 1676,
Ole Christensen Rømer was observing the transits of Jupiter's
moon ‘IO’ and determined that the times between eclipses got shorter
as the Earth approached Jupiter, and longer as Earth moved further
away. He hypothesized that this variation was due to the time it
took light to travel the varying distance and estimated that the
time for light to travel the diameter of the Earth's orbit was 22
minutes.
- Today, the speed of light in a vacuum is fixed at 299,792,458
m/s and is considered to be a universal constant in all reference
frames. However, the speed of light in a medium is always slower
than the speed of light in a vacuum and depends on the characteristics
of the medium.
- The amplitude of a light wave is related to its intensity.
Intensity is considered to be an absolute measure of a light
wave's power density, while its
brightness is the relative
intensity as perceived by the average human eye.
- The frequency of a light wave determines its colour,
although frequency is also directly proportional to its energy.
Visible light can be extended to include ‘ultraviolet light’
and ‘infrared light’, although even collectively, they
represent only a small fraction of the
electromagnetic spectrum.
- Phase differences between light waves can produce visible interference effects.
As indicated, in the context of the development timeline of
foundation science, the focus of this entire section will be
orientated towards a description of light as an electromagnetic
wave. However, in terms of this opening introduction it might be
worth simply outlining some of the anomalies that may require
further consideration when eventually describing light, either as a
wave or as a photon or both. One common attribute shared by all these
descriptions is the speed of light [c=3*108m/s], although
this this speed is specific to a vaccum, which can be reduced when
passing through a transparent medium, such as a gas or glass.
However, while there is empirical agreement on this speed, the
mechanism by which this slow-down occurs appears to differ in the
details of each model, i.e. wave or photon. For example, within the
photon model, it appears to be suggested that a photon always
travels at [c], which can be delayed due to
collisions i.e. absorption and emission, within the atoms and molecules
of
the material. In these terms, it is assumed that the idea of a photon slowing
down due to the refractive index of the material must be a statistical
average of the time for [n] photons to pass through the material. In
contrast, within the EM model, it appears to be suggested that
the EM wave's propagation velocity is slowed within a material due
to the disturbance caused by the wave's own electrical field as it
propagates pass charged particles within the material on route. Typically,
these particles will be electrons rather than protons due to the large
difference in mass-energy and this effect is sometimes described in
terms of the electric susceptibility of the medium. By a similar argument,
the magnetic field of the EM wave also creates a disturbance proportional
to the magnetic susceptibility of the medium. So, as the electromagnetic
fields oscillate within the EM wave, charge particles in the material
also resonate at the same frequency. As such, there is a superposition
of different oscillating fields with the same frequency, but not necessarily
the same phase. As a consequence, a resulting superposition wave may
have the same frequency, but a shorter wavelength, which results in
slower phase velocity [vp=fλ]. At this stage, these
differences are only being highlighted to provide a back-drop to
some of the wider implications extending beyond the scope of
foundation science.